FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction

نویسندگان

چکیده

Click-through rate (CTR) prediction is one of the fundamental tasks in online advertising and recommendation. Multi-layer perceptron (MLP) serves as a core component many deep CTR models, but it has been widely shown that applying vanilla MLP network alone ineffective learning complex feature interactions. As such, two-stream models (e.g., Wide&Deep, DeepFM, DCN) have recently proposed, aiming to integrate two parallel sub-networks learn interactions from different views for enhanced prediction. In addition stream learns implicitly, most existing research focuses on designing another complement with explicitly Instead, this paper presents simple interaction model, namely FinalMLP, which employs only MLPs both streams yet achieves surprisingly strong performance. contrast sophisticated design each stream, our work enhances modeling through selection module, produces differentiated inputs streams, group-wise bilinear fusion effectively captures stream-level across streams. We show FinalMLP competitive or even better performance against four open benchmark datasets also brings significant improvements during an A/B test industrial news recommender system. envision effective model could serve new baseline future development models. Our source code will be available at MindSpore/models FuxiCTR/model_zoo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holistic Neural Network for CTR Prediction

This paper proposes HNN, a holistic neural network structure for click-through rate (CTR) prediction in recommender systems. Empirically, equipped with HNN, the performance of deep neural networks for CTR prediction are improved on Criteo and Huawei App Store datasets.

متن کامل

an application of equilibrium model for crude oil tanker ships insurance futures in iran

با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...

an appropriate model for exchange rate predictability in iran: comparing potential forecastability

nowadays in trade and economic issues, prediction is proposed as the most important branch of science. existence of effective variables, caused various sectors of the economic and business executives to prefer having mechanisms which can be used in their decisions. in recent years, several advances have led to various challenges in the science of forecasting. economical managers in various fi...

An enhanced analytical model for residual stress prediction in machining

The predictions of residual stresses are most critical on the machined aerospace components for the safety of the aircraft. In this paper, an enhanced analytic elasto-plastic model is presented using the superposition of thermal and mechanical stresses on the workpiece, followed by a relaxation procedure. Theoretical residual stress predictions are verified experimentally with X-ray diffraction...

متن کامل

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards lowor high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both lowand highorder feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i4.25577